\qquad

Pre-Requisite Algebra Skills

I. Plotting Points on a Coordinate Plane

Recall: coordinates are represented by (x, y) where x shows how many units to move left and right and y shows how many units to move up and down.

Plot the following coordinates on the coordinate plane: $(4,6),(-1,3),(5,-2),(-4,-1),(6,0)$, and $(0,1)$

II. Graphing Lines

Recall:

$y=\frac{2}{3} x-1 \quad$ where $\frac{2}{3}$ represents the slope $\left(\frac{\text { rise }}{\text { run }}\right)$
and -1 represents the y-intercept (starting point)

Graph the following lines:

$y=-2$

III. Writing an Equation Given Two Points

Recall: To write an equation in slope-intercept form ($y=m x+b$) you need the slope (m) and the y-intercept (b).

Given points $(1,6)$ and $(3,-4)$
$\frac{-4-6}{3-1}=\frac{-10}{2}=-5 \quad$ calculate slope
$6=-5(1)+b \quad$ plug in the slope and any point to find b
$6=-5+b$
$11=b$
$y=-5 x+11 \quad$ write the equation
note: a line parallel to this line would have a slope of -5 (parallel lines have the same slope)
a line perpendicular to this line would have a slope of $\frac{1}{5}$ (perpendicular lines have opposite reciprocal slopes)

Write the equation of the line given points $(1,3)$ and $(-2,5)$:
parallel slope:
perpendicular slope:

Write the equation of the line given points $(4,7)$ and $(-1,-3)$:
parallel slope: perpendicular slope:

IV. Systems of Equations

Recall:

Substitution is best used when one variable can be easily isolated.
$x=-7 y-10$
$3 x+8 y=9$
$\begin{array}{rc}3(-7 y-10)+8 y=9 & \text { sub one variable in for the } \\ -21 y-30+8 y=9 & \text { other and solve } \\ 13 y=39 & \\ y=3 & \end{array}$
$x=-7(3)-10$
$x=-21-10$
$x=-31$
plug the variable in to solve for the other

Elimination is best used when one variable can easily be set up to have opposite coefficients.
$3 x-4 y=-5$
$5 x-2 y=-6$
$3 x-4 y=-5 \quad$ mult. the $2^{\text {nd }}$ equation by -2 to $-10 x+4 y=12$ get the y terms to cancel
$\begin{array}{rlr}-7 x & =-7 & \text { add straight down } \\ \mathbf{x} & =1 & \end{array}$
$3(1)-4 y=-5 \quad$ plug the variable in to solve $3-4 y=-5 \quad$ for the other
$-4 y=-8$
$y=2$

Solve the following systems using substitution or elimination:
$2 x-3 y=-2$
$2 x+y=9$

$$
-4 x+3 y=-2
$$

$$
2 x-y=9
$$

$4 x+y=24$
$3 x-y=16$

$$
y=x+1 \quad 3 x+4 y=-14
$$

V. Factoring Trinomials

Recall: (always check if you can factor out a GCF first)

AC Method $\rightarrow 6 x^{2}+5 x-4=0\left(a x^{2}+b x+c\right)$
-24 Multiply a and c. Find factors of ac
124 that add up to b.
212
-38 Replace middle term with chosen factors.
46
$6 x^{2}-3 x+8 x-4=0$
Factor by grouping.
$3 x(2 x-1)+4(2 x-1)=0$
$(2 x-1)(3 x+4)=0$
Set each factor equal to 0 and solve.
$2 x-1=0$ so $x=1 / 2 \quad 3 x+4=0$ so $x=\frac{-4}{3}$

Solve the following equations by factoring:
$3 x^{2}-14 x-5=0$
$6 x^{2}-5 x=4$
$x^{2}+7 x+6=0$
$x^{2}-5 x+6=0$

VI. Solving Equations

Recall:

Check for distribution.

Move all terms with the variable to one side.

Combine like terms.

Isolate the variable by undoing addition and subtraction then multiplication and division (opposite operation on the other side)

Solve:
$5(x+3)+9=3(x-4)+6$
$1 / 2 x-3=2-3 / 4 x$
$4 b+5=1+5 b$

VII. Simplifying Radicals

$\sqrt{75}$
$\sqrt{32}$
$\sqrt{144}$

Recall:

* Know your perfect squares!
* Not a perfect square? Break down into factors that include a perfect square.

$$
\begin{gathered}
\sqrt{20} \\
\sqrt{4} \sqrt{5} \\
\hline 2 \sqrt{5}
\end{gathered}
$$

VIII. Fraction Work \rightarrow ALWAYS SIMPLIFY

Recall:

Multiplication (straight across) $\quad \frac{2}{3} \bullet \frac{4}{5}=\frac{8}{15}$
Division (multiply by reciprocal) $\quad \frac{4}{3} \div \frac{2}{5}=\frac{4}{3} \bullet \frac{5}{2}=\frac{20}{6}=\frac{5}{3}$
$\frac{2}{3}+\frac{4}{5}=\frac{10}{15}+\frac{12}{15}=\frac{22}{15}$

