Algebra Review and Geometry Vocabulary

Pre-Requisite Algebra Skills

I. Plotting Points on a Coordinate Plane

Recall: coordinates are represented by (x, y) where x shows how many units to move <u>left and right</u> and y shows how many units to move <u>up and down.</u> Plot the following coordinates on the coordinate plane: (4, 6), (-1, 3), (5, -2), (-4, -1), (6, 0), and (0, 1)

II. Graphing Lines

Graph the following lines:

III. Writing an Equation Given Two Points

Recall: To write an equation in slope-intercept form (y=mx+b) you need the slope (m) and the y-intercept (b).		Write the equation of the line given points (1, 3) and (-2, 5):
Given points (1, 6) and (3, -4)		
$\frac{-4-6}{3-1} = \frac{-10}{2} = -5$	calculate slope	
6 = -5(1) + b 6 = -5 + b 11 = b	plug in the slope and <u>any</u> point to find b	
y = -5x + 11	write the equation	
note: a line <u>parallel</u> to this line would have a slope of -5 (parallel lines have the same slope)		parallel slope:
a line perpendicular to this line would have a slope of $\frac{1}{5}$ (perpendicular lines have opposite reciprocal slopes)		perpendicular slope:

Write the equation of the line given points (4, 7) and (-1, -3):

parallel slope:

perpendicular slope:

IV. Systems of Equations

Recall:			
Substitution is best used when one variable can be easily isolated.		Elimination is best used when one variable can easily be set up to have opposite coefficients.	
x = -7y - 10 3x + 8y = 9		3x - 4y = -5 5x - 2y = -6	
3(-7y - 10) + 8y = 9 -21y - 30 + 8y = 9 13y = 39	sub one variable in for the other and solve	3x – 4y = -5 -10x + 4y = 12	mult. the 2 nd equation by -2 to get the y terms to cancel
y = 3		-7x = -7 x = 1	add straight down
x = -7(3) - 10	plug the variable in		
x = -21 – 10 x = -31	to solve for the other	3(1) - 4y = -5 3 - 4y = -5 -4y = -8 y = 2	plug the variable in to solve for the other

Solve the following systems using substitution or elimination:

2x - 3y = -2	2x + y = 9	-4x + 3y = -2	2x - y = 9
4x + y = 24	3x - y = 16	y = x + 1	3x + 4y = -14

V. Factoring Trinomials

Recall: (always check if you can factor out a GCF first) AC Method $\rightarrow 6x^2 + 5x - 4 = 0$ (ax² + bx + c) Shortcut when a = 1-24 Multiply a and c. Find factors of ac $x^2 - 5x - 14 = 0$ 1 24 that add up to b. 212 Find factors of c that add up to b. -38 Replace middle term with chosen factors. 46 (x + 2)(x - 7) = 0-14 $6x^2 - 3x + 8x - 4 = 0$ 114 x = -2, x = 72 -7 Factor by grouping. 3x(2x-1) + 4(2x-1) = 0(2x - 1)(3x + 4) = 0Set each factor equal to 0 and solve. $2x - 1 = 0 \operatorname{so}(x = \frac{1}{2})$ $3x + 4 = 0 \operatorname{so}(x = \frac{-4}{2})$

Solve the following equations by factoring:

 $3x^2 - 14x - 5 = 0$

 $6x^2 - 5x = 4$

 $x^2 + 7x + 6 = 0$

 $x^2 - 5x + 6 = 0$

VI. Solving Equations

Recall:	Solve:	
Check for distribution.	5(x + 3) + 9 = 3(x - 4) + 6	
 Move all terms with the variable to one side. 		
Combine like terms.		
 Isolate the variable by undoing addition and subtraction then multiplication and division (opposite operation on the other side) 	$\frac{1}{2}x - 3 = 2 - \frac{3}{4}x$	

Recall:* Know your perfect squares!* Not a perfect square? Break
down into factors that include a
perfect square. $\sqrt{20}$
 $\sqrt{4}\sqrt{5}$
 $2\sqrt{5}$

VIII. Fraction Work \rightarrow ALWAYS SIMPLIFY

Simplifying Radicals

 $\sqrt{32}$

VII.

 $\sqrt{75}$

Recall:		$\frac{4}{2}$	$6 \cdot \frac{3}{2}$
Multiplication (straight across)	$\frac{2}{3} \cdot \frac{4}{5} = \frac{8}{15}$	3 7	$0 \div \frac{4}{4}$
Division (multiply by reciprocal)	$\frac{4}{3} \div \frac{2}{5} = \frac{4}{3} \cdot \frac{5}{2} = \frac{20}{6} = \frac{5}{3}$	$\frac{2}{5} + \frac{3}{4}$	$\frac{7}{3} - \frac{2}{9}$
Addition and Subtraction (find common denominator)	$\frac{2}{3} + \frac{4}{5} = \frac{10}{15} + \frac{12}{15} = \frac{22}{15}$		

 $\sqrt{144}$

4b + 5 = 1 + 5b